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ABSTRACT 

We consider the relationship between diffeomorphism and leafwise isometry 
for foliations whose leaves are locally homogeneous Riemannian manifolds of 
negative curvature. 

We are concerned with the following problem. Let M be a compact, smooth 

manifold. Let ~ ,  ~ '  be foliations on M, endowed with Riemannian metrics 

o~, o~' on the leaves. We assume the metrics are smooth along leaves, and vary 

continuously in the transverse direction. Assume ~ ,  ~ '  are C L equivalent, i.e. 
that there is a C 1- diffeomorphism of  M carrying leaves of  ~" to leaves of .~r,. 

When does this imply that ~ and ~ '  are metrically equivalent, i.e. that there is 

a homeomorphism of M carrying leaves of ~ to those of ~ '  smoothly, in such 

a way that co is carried to oJ'? We shall denote the above conclusion by (*). 

THEOREM 1. I f  the leaves of ~ and ~ '  are locally isometric to a quater- 
nionic hyperbolic space of dimension at least 8, or to the Cayley hyperbolic 
plane, then (,) is true. 

THEOREM 2. I f  the leaves of ~ and ~ '  are locally isometric to a real or 
complex hyperbolic space of  dimension at least 3, and ~ admits a holonomy 
invariant transverse measure which is finite on compact sets and positive on open 
sets, then (,) is true. 
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We remark that if the foliation has just one leaf, then the above assertions 
reduce to the Mostow rigidity theorem for rank 1. It would be of interest to 
extend these results to foliations with leaves that are locally symmetric and of 
higher rank. In this case, under the hypotheses of a transverse measure as in 
Theorem 2, the existence of a measurable automorphism of M carrying leaves 
of ~ to leaves of ~ '  smoothly and isometrically follows from the results in [8]. 
In the case of real hyperbolic space, a weaker version of Theorem 2 was proven 
in [7], which also asserts the existence of a measurable automorphism of M 
carrying leaves of .~ to leaves of ~ '  smoothly and isometrically. 

The techniques of proof in Theorems 1 and 2 also yield information 
concerning orbit equivalence for actions of a class of solvable groups in- 
troduced in [6]. 

We recall a definition. 

DEFINITION [6]. Let n be a nilpotent Lie algebra, and let n~ = n ,  

ni+~ = [n, ni]. By a "good gradation" of n we mean a choice of subspaces 
V~ c n~ such that: 

(a) n, = ni +l (~  I/i, 

(b) iV,, V A c V,.÷j, 
(c) [v,, = 

To each good gradation there is a canonical one parameter group of auto- 

morphisms t ~At, wherc At is multiplication by t ~ on V~. We say that a solvable 
Lie group S is of class (C) if it is the semi-direct product of a simply connected 

nilpotent Lie group whose Lie algcbra has a good gradation, by its canonical 

one-parameter automorphism group, and the centralizer of A in the automor- 

phism group of N is A itself. 

THEOREM 3. Let S, S'  be solvable Lie groups o f  class (C). Suppose we are 
given locally free CLactions o f  S and S' on a compact manifold. I f  the actions 
are CLorbit equivalent, then the groups are isomorphic. I f  in addition the 
actions are minimal (i.e. all orbits are dense), then the actions are C O, 
conjugate. 

We remark that this result is in sharp contrast to the measurable orbit 
equivalence theory for actions of these groups [8]. 

PROOF OF THEOREM 1. We shall first convert the foliation into a group 

action. Assume a compact manifold M carries of foliation ~r with a metric on 
the leaves such that all leaves are locally isometric to a homogeneous space X. 

Fix an origin Xo~-X. Let G be the isometry group o fXand  Kthe isotropy group 
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ofxo. Define a principal K-bundle P over M in the following way. Let P be the 

space of continuous maps p : X ---- M which are an isometric covering onto a 

leaf. The projection map/Z: P----M is defined by/z(p)  = p(xo). The space P is 

topologized as a subspace of C°(X, M) .  This is sufficient for our purposes but 

we remark that if ~= is smooth, P is a smooth manifold and a a smooth bundle 

projection. The group G acts on P by ( g .  p ) ( x )  = p ( g - I x ) .  This action is 

locally free and its orbits project exactly onto the leaves o f ~ .  Restricted to K, 

the action is simply transitive on each fibre of/z, and turns/Z into a principal K- 
bundle. 

Next, assuming that the leaves carry strictly negative curvature, we con- 

struct the bundle of asymptotic boundaries of the leaves. Denote by .~" the 

compactification of X in the sense of the theory of manifolds of negative 

curvature (see [ 1 ]), i.e., )?is a topological space homeomorphic to a closed disk, 

and X is embedded in )? as the interior of  the disk. The only property of this 

construction we shall need is the following: any bi-Lipschitz self map of X 

extends continuously to )? (see [2], [3]). Of course, this includes the iso- 

mettles of X. Define the spaces E = (X X P)/K,  ff~ = ()? X P) /K,  where K acts 
diagonally. 

The map q : E ~ M ,  q(x ,  p )  = I t (P)  = P(Xo) is a fibration with fibers homeo- 
morpic to X. There is a natural section a : M - - " E ,  m---, (x0, any p ~ P  such 

that p (x0) = m). The map r: E ~ M ,  r(x ,  p )  = p (x)  is a submersion. For each 
point m E M ,  the map r is an isometric covering of  the fiber Em on to the leaf at 

m. In some sense, E is the collection of the universal coverings of leaves o f ~  r, 
the covering map being r. 

Let d be a C t diffeomorphism of M which sends leaves of ~ to leaves of ~".  

Then, for each leaf of  ~ ,  the map d is a bi-Lipschitz diffeomorphism of  L onto 
a leaf L'. Indeed, the pulled-back metric d*(to') is continuous, thus there exists 

a constant Q such that Q-509 < d*(to') < Q2to. Thus d is bi-Lipschitz with a 

constant Q2 which does not depend on the particular leaf L. Let E ' , /~ '  be the 

spaces constructed above for the foliation ~ ' .  We claim that d extends 

uniquely to a homeomorphism D between E and E '  such that 

(i) q'O = dq, 

(ii) r'D = dr. 

Indeed, condition (i) means that D maps a fiber E,, onto E~tm). Now r :Em ~ Lm 
and r':E~t,,)---,L~t,~) are universal coverings of the leaves. Condition (ii) 
means that D : E,, ~ E~t,~) is nothing but the unique lift of  d to the universal 
covering spaces of Lm and L~tm) sending a ( m )  to a ' (d(m)) .  Clearly, the 
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map D. E m Ed(m) is bi-Lipschitz, so it extends by continuity to/~m. The fact 
that this extension is continuous on the whole of/~ follows from the following 
lemma. 

LEMMA 4. Let Y be a topological space, let D" X × Y--, X be continuous, 

and bi-Lipschitz on X × {y} with a uniform constant Q. Then the extension o f  

D to )? X Y is continuous. 

PROOF OF LEMMA 4. This follows from any proof  of  the continuous 
extension of a single bi-Lipschitz map to the asymptotic boundary. See [6] for 
example. 

Now we use results in [6]. Assume that Xis  a quaternionic hyperbolic space 
of dimension at least 8 or the Cayley hyperbolic plane. Then any quasi- 
isometry of Xis asymptotic (i.e., has the same boundary extension) to a unique 
isometry. Thus one obtains a new homeomorphism F : / ~  -~/~' such that 

(i) F = D on the boundary i.e., on/~ - E; and 
(ii) F is an isometry on each fiber of r. 
We claim that F can be used to straighten the original diffeomorphism d to a 

new homeomorphism e of M which is an isometry on the leaves. Indeed, for 
each m E M ,  define e ( m ) =  r'F(a(m)). Denote by fm the unique isometry of  
the leaf Lm onto L~tm ) such that fro(m)= e(m) and the following diagram 
commutes: 

F t 
Em ~ Ed(m) 

r r' 

Lm /M , L~(m ) 

If the leaf L m has a fundamental  group F c Isom(Em), then F is also the 
fundamental  group of  L~¢m), and the map D : Em --" E~,~) is F-equivariant. The 
map F is as well and thus fm is well-defined. We claim that, as the point m 
varies on a fixed leaf, the map fm does not vary, i.e.,fro ~ e  for any m. This will 
prove that e is an isometry, and finishes the proof. Thus, fix m,  n in the same 
leaf L. Choose an isometry c : E, ~ Em such that rm c = r,. Choose c' similarly. 

Then c'Fnc-Z:Em ~ E "  covers f~ with respect to the coverings rm, r ' .  The 
maps c, c', being isometries, extend to the boundary, and we continue to 
denote these extensions by c, c'. The map c'Dnc -~ "Em--'E" covers the 
map d :  L ~ L '  with respect to rm, r ' .  Hence c'Dnc- ~ = ~,D~ for some y ~ n~(L) 
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acting on E ' .  This equation is also true on the boundary, and hence c 'F ,c -~  = 

~'Fm. Thus, c 'F , c  -1 also covers fro with respect to rm, r ' ,  and hence f m =  f, .  

PROOF OF THEOREM 3. The result in [6] is that for the class of solvable 
groups we consider, quasi-isometric groups are isomorphic and any quasi- 
isometry is asymptotic to a left translation. In particular, the isometry group of 
S is S itself. The argument above provides us with an orbit equivalence e of Jr  
to Jr '  which is an isometry on each leaf. One just needs to check that e 
conjugates the S actions. For s ~ S, the map e-lse is a homeomorphism of M 
preserving each leaf of the foliation j r ,  and which is an isometry of this leaf. 
For each point m ~ M ,  there is a unique element a(s, m) of S such that 
tr(s, m ) m  = e -~se (m) .  The map m-~  a(s, m) is continuous, and thus con- 
stant if we assume that the foliation Jr  is minimal. Obviously s--or(s) is a 
group homomorphism. Interchanging Jr  and j r ,  in this argument, we see that 
a is an automorphism. Finally we observe that the definition of class (C) 
implies that every automorphism of S is inner, and hence e can be modified to 
conjugate the S actions. 

PROOF OF THEOREM 2. In the case of foliations by real or complex 
hyperbolic spaces, the bi-Lipschitz map D : E -* E '  is not necessarily asympto- 
tic to an isometry. We can prove this under the extra assumption that Jr  
admits a suitable finite invariant transverse measure. One extends Mostow's 
argument in [4] and [5]: over each ergodic component of the action of G on P, 
one shows that the boundary extension of D on P X X(oo), which a priori is 
Q-quasiconformal, is in fact 1-quasiconformal, and thus asymptotic to an 
isometry. This is done in [7] for real hyperbolic space. The argument in the 
complex case is similar, but we present the arguments here for the sake of 

completeness. 
The diffeomorphism d extends to a measurable orbit equivalence 0: P ~ P '  

which is a quasi-isometry on the orbits of G. In the same way as we constructed 
the space E and the maps r and D, we consider the space G X P; the map 
r: E --* M is replaced by the group action R" G X P --" P and D : E --* E '  is 

replaced by the cocycle fl  of the action of G: 

~'l(g, s)  = (g' ,  O(s)) where O(gs) = g'O(s). 

On each factor G X{s}, the quasi-isometry i)~:G X ( s } - ~ G  X{0(s)} 
extends to a quasiconformal homeomorphism of the boundary sphere X(~).  
In the sequel, we use the Poincar6 disk model, where real (resp. complex) 
hyperbolic n-space is seen as a ball in Euclidean (rcsp. Hcrmitian) n-space. 
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The boundary sphere carries an induced Riemannian (resp. Carnot-Caratheo- 
dory) metric for which the group G acts conformally. Recall that the round 
sphere S 2"- ~ in C n carries a canonical contact structure: the contact hyperplane 
Wx at x E S  2"-' is the union of all complex lines in TxS 2n-1. The Carnot-  
Caratheodory metric is a metric on this hyperplane field. Clearly, if s E P 
projects onto m E M ,  then fl  coincides with D modulo conformal mappings 
identifying X(oo) with /~,~ and /~'~t,~). Thus we need only show that f~ is 
l-quasiconformal on the boundary. That is, at each point where fl  is differenti- 
able, we show that the differential is a similitude. (In the complex case, the 
differential should be understood in the sense of [6].) 

Letj: RX(oo) ~ X(oo) be the bundle of  tangent rays to X(oo) in the real case, 
or the bundle of rays lying in the contact hyperplanes Wx, x ~X(oo), in the 
complex case. Then RX(oo) is a compact space on which G acts transitively. 
Let v be the product measure on X(oo) × P, so that v is quasi-invariant under 
G. If  Y c X ( ~ ) X  P is (almost) any v-ergodic component,  then G is still 
ergodic on 1 ~ = j-~(Y) X P. To see this, we recall that by Moore's theorem (see 
[8]), any cocompact subgroup of  G acts ergodically on an ergodic G-space with 
a finite invariant measure, or equivalently, that for any cocompact G~ c G, G 
acts ergodically on the product of  G/G1 with any ergodic G-space of  finite 

invariant measure. It follows that Y is itself the product  of X ( ~ )  with an 
ergodic component  of the action on P (which we recall has finite invariant 
measure.) Ergodicity on 1 ~ follows since G is transitive on RX(oo) with non- 

compact stabilizer. 
We note that a linear map 2 between Euclidean spaces is a similitude if and 

only if the ratio 12 (v) I / I v l is constant. Therefore, non-conformality can be 
measured by a single function on RX(oo). Namely, at each point (x, s ) ~  
X(oo) × P  where t) is differentiable, we define for r~RxX(oo), ¢(r,s)= 
Id~(v)l/Idf~llvl for some vEr. We claim that ~ is G-invariant. Indeed, if 
2, 2' are similitudes, 

12 odf~o2'(v)l/12 o d ~ o 2 ' l  Ivl -- Idt'2(2'v)l/Id~112'(v)l. 

From the cocycle equation ~g(h)~s(g)= f~s(hg) where sEP, g, h EG, we 
obtain 

n ~  = #(g ' )  o n ,  o~(g-1)  

where g '  = f l , ( g ) ~  G, and fl denotes the action of  G on X(oo) by conformal 
mappings. Taking differentials, we conclude q)(gr, gs)= q)(r, s). Thus ¢ is 
constant a.e. on I7, for (almost) every ergodic component  Y. It follows that 
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almost every boundary extension f~s is 1-quasi-conformal on the boundary, 
and hence conformal [5], [6]. It follows from Lemma 4 that every boundary 
extension is conformal, and hence the boundary extension of a unique 
isometry. The proof is then completed as in the proof of Theorem 1. 

REFERENCES 

1. P. Eberlein and B. O'Neill, Visibility manifolds, Pac. J. Math. 46 (1973), 45-109. 
2. V. Efremovic and E. Tikhonirova, Equimorphisms of hyperbolic spaces, Isv. Akad. Nauk 

USSR 28 (1964), 1139-1144. 
3. M. Morse, Recurrent geodesics on a surface of negative curvature, Trans. Am. Math. Soc. 22 

(1921), 84-100. 
4. G. D. Mostow, Quasi-conformal mappings in n-space and the rigidity of hyperbolic space 

forms, Publ. Math. I.H.E.S. 34 (1967), 53-104. 
5. G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. Math. Stud. 78 (1973). 
6. P. Pansu, Metriques de Carnot-Caratheodory et quasi-isometries des espaces symetriques 

de rang un, preprint, 1984. 
7. R. J. Zimmer, On the Mostow rigidity theorem and measurable foliations by hyperbolic 

space, Isr. J. Math. 43 (1982), 281-290. 
8. R. J. Zimmer, Ergodic Theory andSemisimple Groups, Birkhauser, Boston, 1984. 


